Spider monkeys of obviously different types at Children's Zoo of the San Diego Zoo, many years ago. This sort of picture is now only rarely seen. | ||
Spider monkeys with their prehensile tails at the San Diego Wild Animal Park; this is Ateles belzebuth. | ||
3) Implantation Few studies have been undertaken on spider monkey implantation. Wislocki (1930) had the best specimens, but they were still insufficient to know details. Implantation in the uterus simplex occurs similar to that in macacs, with one lobe presumably located anterior, the other posterior in the uterus. The bridging vessels run horizontally from one lobe to the other but only in one segment of membranes, not bilaterally. The larger lobe ("primary") usually has the cord insertion. One of our specimens deviated from that rule. 4) General characteristics of placenta The spider monkey has a bilobed placenta and the lobes are subdivided into smaller lobules. It is thus cotyledonary and hemochorial in the type of its barrier function. |
|
Delivered placenta from spider monkey pregnancy at term. The placenta is bilobed but many smaller lobular dubdivisions are present in the "primary" lobe. There is meconium staining and the "bridging vessels" course only on one side of the membranes. | ||
Invasive trophoblast is mostly limited to the decidua and is composed of sheets of extravillous trophoblast that characteristically surround the maternal decidual arteries, rather than invading them. The placental villi are much more trabecular than those of man and cercopithecids, as was already mentioned by Mossman (1987). In that respect, the spider monkey placenta is more similar to that of callithricids (marmosets and tamarins). In some areas, particularly near the maternal surface, the villi have a near filiform appearance. Young placentas have larger villi with a rounder appearance and possess foci of hematopoiesis, "blood islands", in their fetal capillaries, much as the callithricids have. These are not found at term, however. 5) Details of barrier structure This is a characteristic hemochorial placenta. The maternal blood circulates in the intervillous space (IVS) and surrounds the villi with their syncytial surfaces. Syncytial "buds" are commonly found on the villous surfaces and one would expect that, as in humans, they would often detach and land in the maternal lung, as happens in humans. |
|
The "filiform", trabecular nature of the villi is more pronounced near the placental floor (left) than higher up in the placenta (below left). | ||
The "filiform", trabecular nature of the villi is more pronounced near the placental floor (above left) than higher up in the placenta (left). | ||
Term spider monkey villous tissue with little blood in the intervillous space (common). The red blood cells are all contained in the fetal circulation. Multinucleated syncytiotrophoblast covers all villi and forms "knots" (center) that often detach. Cytotrophoblast cannot be discerned at term in paraffin material. | ||
Immature placenta of stillborn fetus with 39 g placenta. Villi are larger than at term and contain foci of hematopoiesis (dark elements). Rare cytotrophoblastic cells can be identified. | ||
Filiform villi on right attach to a large deposit of "X-cells" which has a cystically degenerated center. Such X-cell cysts are common in human placentas and contain major basic protein which is the secretory product of X-cells. | ||
6) Umbilical cord There were four umbilical vessels in addition to a large allantoic duct in all but two of our placentas. These had only single arteries, thus altogether only three blood vessels. They were associated with normal fetuses. The allantoic duct may have a good urothelial lining or it may be atrophied. In one cord the duct was apparently occluded. The duct was usually central but in some sections the large fetal vessels "hang" into the sac on broad strands of Wharton's jelly. The cords measured between13 and 30 cm in length (average 23 cm), had occasional right twists, but generally were not twisted much. |
|
Sections of two different umbilical cords to show the slit-like allantoic duct (left) and the large duct with "hanging" blood vessels in the ductal space. | ||
Sections of two different umbilical cords to show the slit-like allantoic duct and the large duct with "hanging" blood vessels in the ductal space. | ||
7) Uteroplacental circulation The general vasculature of the placental/uterine system has not been described in detail in this species. Gruenwald (1972) had one specimen and believed the spider monkey placenta to resemble so much that of the squirrel monkey that appropriate inference can be drawn from their study. He made reference to the fact that several maternal arteries enter the fetal lobules. The decidua basalis has, however, large maternal spiral arterioles that are typically surrounded and only slightly invaded by extravillous trophoblast. |
|
Placental "floor" with large maternal decidual blood vessel at left, surrounded by trophoblast. At "T" is the basal layer of extravillous trophoblast, next to the villous attachment (right). Note the invasion of the decidua by darker trophoblastic cells. | ||
8) Extraplacental membranes An unusual feature of spider monkey placentas is their large allantoic sac, an exceptional feature in higher primate placentas (Miller & Benirschke, 1982; 1985). It was found in all of the placentas that we have had available. In contrast to artiodactyla, there was not the universal vascularization of the allantoic membrane. Fluid was expressed from the filled allantoic sac through the umbilical duct, and it was thus assumed to be fetal urine. In a specimen of howler monkey, neither allantoic sac nor a duct was found. |
|
At left is a section from the margin of the placenta with the attachment of the membranes. Note the dark cells (extravillous trophoblast) that surround the maternal blood vessel. | ||
At left is a section of membranes to show the amnion (left) and allantoic sac (center). | ||
The decidua shows frequently much degeneration, frank yellow necrosis and hemorrhage. This is true for the decidua basalis as well as for the decidua capsularis. In the membranes, of course, travel the thick-walled fetal blood vessels that connect the lobes. The amnion is cuboidal to slightly columnar, especially when there had been meconium discharge. In that case there is some degeneration of the amnionic epithelium and the columnar appearance becomes more striking. Meconium-laden macrophages can be found as in the human membranes after the discharge of meconium. 9)
Trophoblast external to barrier 11)
Various features
14) Immunology
15) Pathological features |
|
Term placenta with "amnionic sac infection", i.e. chorioamnionitis and funisitis. This shows the fetal surface with emigration of polymorphonuclear leukocytes from the mother in the intervillous space (IVS) and from the fetus' surface vessel. The migration is always towards the surface where the chemotactic agent (bacterium etc.) resides. | ||
Maternal surface of spider monkey placenta showing two central areas of retroplacental hemorrhage (abruptios) in the larger lobe. | ||
That abortion occurs in wild animals has been shown with fecal steroid determination in the study by Campbell et al. (2001). 16)
Physiological data 18)
Other relevant features and need for future studies References Benirschke, K. and Kaufmann, P.: The Pathology of the Human Placenta, 4th ed. Springer-Verlag, New York, 2000. Blond, J.L., Lavillette, D., Cheynet, V., Bouton, O., Oriol, G., Chapel-Fernandes, S., Mandrand, B., Mallet, F. and Cosset, F.L.: An envelope glycoprotein of the human endogenous retrovirus HERV-W is expressed in the human placenta and fuses cells expressing the type D mammalian retrovirus receptor. J. Virol. 74:3321-3329, 2000. Campbell, C.J., Shideler, S.E., Todd, H.E. and Lasley, B.L.: Fecal analysis of ovarian cycles in female black-handed spider monkeys (Ateles geoffroyi). Amer. J. Primatol. 54:79-89, 2001. Cell lines from: http://www.sandiegozoo.org/conservation/cres_home.html. Please direct your inquiries to Dr. Oliver Ryder (oryder@ucsd.edu). Collins, A.C. and Dubach, J.M.: Nuclear dna variation in spider monkeys (Ateles). Mol. Phylogenet. Evol. 19:67-75, 2001. Cronin, J.E. and Sarich, V.M.: Molecular systematics of the new world monkeys. J. Human Evol. 4:357-375, 1975. de Boer, L.E.M.: Cytotaxonomic Studies in the Primate Suborders Prosimii and Platyrrhini. Drukkerij Bronder-Offset B.V., Rotterdam, 1972. de
Boer, L.E.M. and Bruin, M. de: Chromosomal distinction between the red-faced
and black-faced spider monkeys (Ateles paniscus paniscus and A.
p. chamek). Zoo Biol. 9:307-316, 1990. Eisenberg, J. F.: Reproduction in two species of spider monkeys, Ateles fusciceps and Ateles geoffroyi. J. Mammal. 54:955-957, 1973. Gray, A.P.: Mammalian Hybrids. A Check-List with Bibliography. Commonwealth Agricultural Bureaux, Farnham Royal, Slough, England, 1972. Gruenwald, P.: Expansion of placental site and maternal blood supply of primate placentas. Anat. Rec. 173:189-204, 1972 Hernandez-Lopez, L., Mayagoitia, L., Esquivel-Lacroix, C., Rojas-Maya, S. and Mondragon-Ceballos, R.: The menstrual cycle of spider monkey (Ateles geoffroyi). Amer. J. Primatol. 44:183-195, 1998. Hobson, B.M. and Wide, L.: The similarity of chorionic gonadotrophin and its subunits in term placentae from man, apes, old and new world monkeys and a prosimians. Folia Primatol. 35:51-64, 1981. Kaplan, C.G.: Intrauterine infections in nonhuman primates. J. med. Primatol. 8:233-243, 1979. Kellogg, R. and Goldman, E.A.: Review of the spider monkeys. Proc. US National Museum 96:1-45, 1944. Konstant, W.R. and MittermeierR.A.: Spider monkeys in captivity and in the wild. Primate Conservation #5 (January) pp.82-109, 1985. Konstant, W.R.: Considering subspecies in the captive management of Ateles. Chapter 61 (pp. 911-920) In, Primates. The Road to Self-Sustaining Populations. K. Benirschke, ed. Springer-Verlag, New York, 1986. Kriener, K., O'hUigin, C., Tichy, H. and Klein, J.: Convergent evolution of major histocompatibility complex molecules in humans and New World monkeys. Immunogenetics 51:169-178, 2000. Kunkel, L.M., Heltne, P.G. and Borgaonkar, D.S.: Chromosomal variation and zoography in Ateles. Intern. J. Primatol. 1:223-232, 1980. Mi, S., Lee, X., Li, X.P., Veldman, G.M., Finnerty, H., Racie, L., LaValle, E., Tang, X.Y., Edouard, P., Howes, S., Keith, J.C. and McCoy, J.M.: Syncytin is a captive retroviral envelope protein involved in human placental morphogenesis. Nature 403:785-789, 2000. Miller, P.W. and Benirschke, K.: Anatomical and functional differences in the placenta of primates. Biol. Reprod. 26:29-53, 1982. Miller, P.W. and Benirschke, K.: A large allantoic sac in the placenta of the spider monkey, Ateles geoffroyi. Placenta 6:423-426, 1985. Mittermeier, R.A.: Primate conservation priorities in the neotropical region. Chapter 16 (pp. 221-240) In, Primates. The Road to Self-Sustaining Populations. K. Benirschke, ed. Springer-Verlag, New York, 1986. Mossman, H.W.: Vertebrate Fetal Membranes. MacMillan, Houndmills, 1987. Nowak, R.M.: Walker's Mammals of the World, Vol. II. 6th edition. The Johns Hopkins University Press, Baltimore, 1983. Puschmann, W.: Zootierhaltung. Vol. 2, Säugetiere. VEB Deutscher Landwirtschaftsverlag, Berlin, 1989. Rossan, R.N. and Baerg, D.C.: Laboratory and feral hybridization of Ateles geoffroyi panamensis Kellogg and Goldman 1944 and A. fusciceps robustus. Primates 18:235-237, 1977. Schneider, H.: The current status of the New World monkey phylogeny. An. Acad. Bras. Cienc. 72:165-172, 2000. Scott, G.B.D.: Comparative Primate Pathology. Oxford University Press, Oxford, 1992. Voisset, C., Blancher, A., Perron, H., Mandrand, B., Mallet, F. and Paranhos-Baccalà, G.: Phylogeny of a novel family of human endogenous retrovirus sequences. HERV-W, in humans and different primates. AIDS Res. Hum. Retrovir. 15:1529-1533, 1999. Wislocki, G.B.: Remarks on the placentation of a platyrrhine monkey (Ateles geoffroyi). Amer. J. Anat. 36:465-487, 1926. Wislocki, G.B.: On a series of placental stages of a platyrrhine monkey (Ateles geoffroyi) with some remarks upon age, sex and breeding period in platyrrhines. Contrib. Embryol. 22:173-192, 1930. |
|
back
to top © 2002. All rights reserved. welcome | home | intro | placentation | glossary | author contact me: kbenirsc@ucsd.edu |